Introduction David Young - CLARREO Project Scientist 1st CLARREO SDT **Team Meeting** 320 K May 17-19, 2011 NIA, Hampton, VA # **Meeting Goals (recap)** Introduction of Team - Reach agreement on team roles and guidelines for interactions - / - Presentation of recent results and planned research Identify opportunities for future collaboration / ### Collectively develop the path forward - SDT coordination - Identification of critical science studies - Strategic planning - Future opportunities - Planning for next Decadal Survey - Communicating CLARREO externally ### **SDT Coordination** - Working Group Structure is eliminated - Coordination can be done directly among Team members - Please let Bruce or I know (to avoid duplication) - Telecon frequency - 1 / month or as needed? - Meeting frequency - Currently planned as 2 / year. - Next meeting should be at an external member site - How do we incorporate engineering in our planning? - Any other issues? ### **Identification of Additional Studies** #### **CLARREO Refocus Activities and Deliverables** Deliverables are shown in bold text | Science Study Focus Area | Organizations | 2011 | 2012 | 2013 | 2014 | 2015 | |---|---|------------------------------------|--|--|--|--| | IR SI Traceability
RS SI Traceability | LaRC/NIST/UW/Harvard/UK/Italy
GSFC/NIST/LASP/UK-NPL | SI Design | CDS Analysis
CDS Analysis | | Test Inst Model
Test Inst Model | Final Report
Final Report | | IR Spectral Inst. Reductions: Capability/Cost
RS Spectral Inst. Reductions: Capability/Cost | LaRC/GSFC/UW/Harvard
GSFC/LASP | Limit Spectral
Limit Spectral | Vary Accuracy
Vary Accuracy | Alt Methods
Alt Methods | Alt Methods
Alt Methods | Final Report
Final Report | | Decadal Change Climate OSSEs | UC Berkeley/U Michigan/Canada | IR/RS/RO | Alt Orbits | Clim. Sensitivity | AR5/CFMIP | Final Report | | Climate Change Spectral Fingerprinting | LaRC/Berkeley/LASP/Miami | Fast RS code | IR/RS/RO | Nonlinearities | Cloud Amt/Prop | Final Report | | Climate Change Reference Intercalibration
Suborbital Options for IR Reference Intercal
Suborbital Options for RS Reference Intercal | LaRC/GSFC/UW/NOAA/GSICS
UW/LaRC/NIST
LASP/LaRC/NIST | Alt Orbits
Aircraft
Aircraft | Polariz Models
Aircraft
Aircraft | Alt Methods
Airships
Airships | Alt Methods Airships Airships | Final Report
Final Report
Final Report | | Decadal Stability of Retrieval Algorithms | LaRC/UMd | IR tests | IR/RS tests | IR/RS Methods | IR/RS Methods | Final Report | | Orbital Sampling for Spectral Fingerprinting
Orbital Sampling for Reference Intercalibration | LaRC
LaRC | Alt Orbits
Alt Orbits | Natural Var
Natural Var | Alt Methods
Alt Methods | Alt Methods
Alt Methods | Final Report
Final Report | | GNSS-RO Improvements for climate change | Harvard/JPL/LaRC | < 5 km | < 5 km | > 20km | > 20 km | Final Report | | Data Systems to Support Studies | Pleiades Supercomputer/ASDC | OSSEs/Analysis | OSSEs/Analysis | OSSEs/Analysis | OSSEs/Analysis | | | Documentation: Journal Papers, Reports | | All | AII | All | All | All | | CDS Focus Area | | | | | | | | IR Calibration Demonstration System (CDS)
RS Calibration Demonstration System (CDS) | LaRC/GSFC/NIST
GSFC/NIST | Assemble
Assemble | Complete/Cal
Complete/Cal | , | Cal/Cap Trades
Cal/Cap Trades | Final Report
Final Report | | Engineering Focus Area | | | | | | | | Reduced IR Instrument Studies | LaRC/GSFC | Design / Cost | Accommodation
Assessment
Accommodation
Assessment | Science Value
Assessment
Science Value
Assessment | Science Analysis
/ Design Update
Science Analysis
/ Design Update | Final Report | | Reduced RS Insrument Studies | GSFC/LaRC | | | | | Final Report | | Accomodation and Access to Space Analyses | LaRC | Identify Options | Cost Analysis /
Verification | Science Analysis
/ Design Update | Finalize options and costs | Final Report | ### **Future opportunities** #### R&A solicitations Guidance: Team members should look for opportunities to propose related work, but do <u>NOT</u> re-propose the same work. #### Venture Class solicitations - Guidance: - VC missions and instruments are not intended to replace or advance individual Decadal Survey missions, however they can address portions of mission science - Don't call it "CLARREO" - Missions must have compelling science that can be achieved in the nominal mission life ### Partnerships Guidance: We can pursue alternative means of achieving CLARREO science objectives, including potential partnerships Others? ### **Potential Partnerships** - UK (TRUTHS) - UKSA - Imperial - UK Met Office - NCEO - Italy (FORUM) - ESA - EUMETSAT - Korea Met Center - NIST - Other NMI? - NOAA - · What else? # **Strategic Communications** #### Guidance: - We can still talk about CLARREO as a mission, but not as a particular mission architecture with a launch date - Focus on the measurements and science and "possible" solutions - How do we reach the right constituencies and audiences? - Journal articles - Conferences - Engage key groups (CEOS, GCOS, GSICS, etc - What else? ### Consistent message - "CLARREO is not <u>dead</u>" - CLARREO SDT continues and is supported - Work continues as described in White Paper - What else? # Planning for the Next DS - We need to complete and publish our science studies - Work collectively on answering key questions in preparation of the next DS # **Backups** # **ROSES Opportunities** - Solicitation is still in draft form - Amendments could be made anytime throughout the year - 25 opportunities, ~\$48 Million, funding about 250 proposals - Funding is for FY12 start - CLARREO Relevant Opportunities - Satellite Calibration Interconsistency Studies: \$2M (Lucia Tsaoussi) - GNSS Remote Sensing Science Team: \$1.5M (John LaBrecque) - Advanced Information Systems Technology (AIST): \$8.3M (Karen Moe) # Earth Venture – 2 (EV-2) Investigations - The second call for Venture-class investigations, or Earth Venture-2 (EV-2), will solicited proposals for a complete, principal investigator-led mission to conduct innovative, integrated, hypothesis or scientific question-driven approach to pressing Earth system science issues - Sustained, science-based data acquisition The successful investigation must advance Earth system science objectives through a focused orbital measurement of sufficient clarity and breadth to prove/disprove a scientific hypothesis or address scientific questions. - Mature technology All proposed investigations must use mature system technology where, at a minimum, there has been a system/sub-system model or prototype demonstration in a relevant environment (Technology Readiness Level (TRL) of 6 or greater by PDR). - Competitive selection The investigations will be selected in an open competition, to ensure broad community involvement and encourage innovative approaches. Single step selection. - Cost and schedule constraints The successful proposal must be accomplished a life cycle from initiation to launch in less than 5 years and a total life cycle cost not to exceed \$150M, including reserves. - EV-2 Draft Announcement of Opportunity released 2/15/2011 and with the winning selection in early FY2012 ### **EV-2 Mission Scope & Parameters** #### Science Scope - The initial AO will have an open science call. - The mission is not intended to replace or advance individual Decadal Survey missions, however they can address portions of mission science #### Schedule The mission must have a life cycle of less than or equal to 5 years to launch and total investigation cost not to exceed \$150 million, including operations and data analysis #### Evaluation Criteria - Science and mission feasibility are both critical. - Maturity and technical readiness of instrument. #### Partnerships - Enabling partnerships are encouraged, but the stability & reliability of the partnership will be considered as a risk element in the proposal - Hosting an instrument on the ISS or on a partner-provided satellite are acceptable, but the partnership must be established in the proposal ### **EV-Instruments (EV-I) – Scope of Program** - The third leg of the Venture-class investigations, or Earth Venture-Instruments (EV-I), will solicited proposals for a complete, principal investigator-led instrument to conduct innovative, integrated, hypothesis or scientific question-driven approach to pressing Earth system science issues - Annual series of Instrument-Only solicitations, beginning in FY2011 with the 1st selection in FY2012 - One-step SALMON solicitation. The investigations will be selected in an open competition, to ensure broad community involvement and encourage innovative approaches. - Cost capped approach, notionally \$90M per solicitation. More than one instrument may be selected within one solicitation. - Instruments will be flown on domestic and international flights of opportunity - Instrument will strive to use a common instrument interface, with the interface requirements developed by the ESSP and defined in the AO. - The PI will retain a central role on the instrument when it is finally manifested and flown ### **EV-I Opportunities and Plans** #### Science Scope - The initial AO will have an open science call, no restrictions. - The instruments are is not intended to replace or advance individual Decadal Survey missions, however they can address portions of mission science, or could be precursor measurements for DS missions #### Cost & Schedule The instrument(s) development time should be up to 4 years from award and must have a life cycle cost not to exceed \$90 million. #### Evaluation Criteria - Science and instrument technical feasibility are both critical. - Technology development is allowable, but only if the integrated instrument development risk still fits within the schedule and cost. #### Partnerships - The proposal does not have to bring a confirmed host mission with it, however suggested or proposed manifests are allowed. - The ESD will negotiate flight opportunities